\(\int \frac {a+b \sin (e+f x)}{c+d x} \, dx\) [154]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 64 \[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=\frac {a \log (c+d x)}{d}+\frac {b \operatorname {CosIntegral}\left (\frac {c f}{d}+f x\right ) \sin \left (e-\frac {c f}{d}\right )}{d}+\frac {b \cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (\frac {c f}{d}+f x\right )}{d} \]

[Out]

a*ln(d*x+c)/d+b*cos(-e+c*f/d)*Si(c*f/d+f*x)/d-b*Ci(c*f/d+f*x)*sin(-e+c*f/d)/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3398, 3384, 3380, 3383} \[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=\frac {a \log (c+d x)}{d}+\frac {b \operatorname {CosIntegral}\left (x f+\frac {c f}{d}\right ) \sin \left (e-\frac {c f}{d}\right )}{d}+\frac {b \cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (x f+\frac {c f}{d}\right )}{d} \]

[In]

Int[(a + b*Sin[e + f*x])/(c + d*x),x]

[Out]

(a*Log[c + d*x])/d + (b*CosIntegral[(c*f)/d + f*x]*Sin[e - (c*f)/d])/d + (b*Cos[e - (c*f)/d]*SinIntegral[(c*f)
/d + f*x])/d

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3398

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, (a + b*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 0] && (EqQ[n, 1] ||
IGtQ[m, 0] || NeQ[a^2 - b^2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a}{c+d x}+\frac {b \sin (e+f x)}{c+d x}\right ) \, dx \\ & = \frac {a \log (c+d x)}{d}+b \int \frac {\sin (e+f x)}{c+d x} \, dx \\ & = \frac {a \log (c+d x)}{d}+\left (b \cos \left (e-\frac {c f}{d}\right )\right ) \int \frac {\sin \left (\frac {c f}{d}+f x\right )}{c+d x} \, dx+\left (b \sin \left (e-\frac {c f}{d}\right )\right ) \int \frac {\cos \left (\frac {c f}{d}+f x\right )}{c+d x} \, dx \\ & = \frac {a \log (c+d x)}{d}+\frac {b \operatorname {CosIntegral}\left (\frac {c f}{d}+f x\right ) \sin \left (e-\frac {c f}{d}\right )}{d}+\frac {b \cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (\frac {c f}{d}+f x\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.89 \[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=\frac {a \log (c+d x)+b \operatorname {CosIntegral}\left (f \left (\frac {c}{d}+x\right )\right ) \sin \left (e-\frac {c f}{d}\right )+b \cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (f \left (\frac {c}{d}+x\right )\right )}{d} \]

[In]

Integrate[(a + b*Sin[e + f*x])/(c + d*x),x]

[Out]

(a*Log[c + d*x] + b*CosIntegral[f*(c/d + x)]*Sin[e - (c*f)/d] + b*Cos[e - (c*f)/d]*SinIntegral[f*(c/d + x)])/d

Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.36

method result size
parts \(\frac {a \ln \left (d x +c \right )}{d}+b \left (\frac {\operatorname {Si}\left (f x +e +\frac {c f -d e}{d}\right ) \cos \left (\frac {c f -d e}{d}\right )}{d}-\frac {\operatorname {Ci}\left (f x +e +\frac {c f -d e}{d}\right ) \sin \left (\frac {c f -d e}{d}\right )}{d}\right )\) \(87\)
derivativedivides \(\frac {\frac {a f \ln \left (c f -d e +d \left (f x +e \right )\right )}{d}+b f \left (\frac {\operatorname {Si}\left (f x +e +\frac {c f -d e}{d}\right ) \cos \left (\frac {c f -d e}{d}\right )}{d}-\frac {\operatorname {Ci}\left (f x +e +\frac {c f -d e}{d}\right ) \sin \left (\frac {c f -d e}{d}\right )}{d}\right )}{f}\) \(103\)
default \(\frac {\frac {a f \ln \left (c f -d e +d \left (f x +e \right )\right )}{d}+b f \left (\frac {\operatorname {Si}\left (f x +e +\frac {c f -d e}{d}\right ) \cos \left (\frac {c f -d e}{d}\right )}{d}-\frac {\operatorname {Ci}\left (f x +e +\frac {c f -d e}{d}\right ) \sin \left (\frac {c f -d e}{d}\right )}{d}\right )}{f}\) \(103\)
risch \(\frac {a \ln \left (d x +c \right )}{d}-\frac {i b \,{\mathrm e}^{\frac {i \left (c f -d e \right )}{d}} \operatorname {Ei}_{1}\left (i f x +i e +\frac {i \left (c f -d e \right )}{d}\right )}{2 d}+\frac {i b \,{\mathrm e}^{-\frac {i \left (c f -d e \right )}{d}} \operatorname {Ei}_{1}\left (-i f x -i e -\frac {i c f -i d e}{d}\right )}{2 d}\) \(111\)

[In]

int((a+b*sin(f*x+e))/(d*x+c),x,method=_RETURNVERBOSE)

[Out]

a*ln(d*x+c)/d+b*(Si(f*x+e+(c*f-d*e)/d)*cos((c*f-d*e)/d)/d-Ci(f*x+e+(c*f-d*e)/d)*sin((c*f-d*e)/d)/d)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.16 \[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=-\frac {b \operatorname {Ci}\left (\frac {d f x + c f}{d}\right ) \sin \left (-\frac {d e - c f}{d}\right ) - b \cos \left (-\frac {d e - c f}{d}\right ) \operatorname {Si}\left (\frac {d f x + c f}{d}\right ) - a \log \left (d x + c\right )}{d} \]

[In]

integrate((a+b*sin(f*x+e))/(d*x+c),x, algorithm="fricas")

[Out]

-(b*cos_integral((d*f*x + c*f)/d)*sin(-(d*e - c*f)/d) - b*cos(-(d*e - c*f)/d)*sin_integral((d*f*x + c*f)/d) -
a*log(d*x + c))/d

Sympy [F]

\[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=\int \frac {a + b \sin {\left (e + f x \right )}}{c + d x}\, dx \]

[In]

integrate((a+b*sin(f*x+e))/(d*x+c),x)

[Out]

Integral((a + b*sin(e + f*x))/(c + d*x), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.24 (sec) , antiderivative size = 171, normalized size of antiderivative = 2.67 \[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=\frac {\frac {2 \, a f \log \left (c + \frac {{\left (f x + e\right )} d}{f} - \frac {d e}{f}\right )}{d} + \frac {{\left (f {\left (-i \, E_{1}\left (\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right ) + i \, E_{1}\left (-\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right )\right )} \cos \left (-\frac {d e - c f}{d}\right ) + f {\left (E_{1}\left (\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right ) + E_{1}\left (-\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right )\right )} \sin \left (-\frac {d e - c f}{d}\right )\right )} b}{d}}{2 \, f} \]

[In]

integrate((a+b*sin(f*x+e))/(d*x+c),x, algorithm="maxima")

[Out]

1/2*(2*a*f*log(c + (f*x + e)*d/f - d*e/f)/d + (f*(-I*exp_integral_e(1, (I*(f*x + e)*d - I*d*e + I*c*f)/d) + I*
exp_integral_e(1, -(I*(f*x + e)*d - I*d*e + I*c*f)/d))*cos(-(d*e - c*f)/d) + f*(exp_integral_e(1, (I*(f*x + e)
*d - I*d*e + I*c*f)/d) + exp_integral_e(1, -(I*(f*x + e)*d - I*d*e + I*c*f)/d))*sin(-(d*e - c*f)/d))*b/d)/f

Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.33 (sec) , antiderivative size = 693, normalized size of antiderivative = 10.83 \[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=\text {Too large to display} \]

[In]

integrate((a+b*sin(f*x+e))/(d*x+c),x, algorithm="giac")

[Out]

1/2*(b*imag_part(cos_integral(f*x + c*f/d))*tan(1/2*e)^2*tan(1/2*c*f/d)^2 - b*imag_part(cos_integral(-f*x - c*
f/d))*tan(1/2*e)^2*tan(1/2*c*f/d)^2 + 2*a*log(abs(d*x + c))*tan(1/2*e)^2*tan(1/2*c*f/d)^2 + 2*b*sin_integral((
d*f*x + c*f)/d)*tan(1/2*e)^2*tan(1/2*c*f/d)^2 + 2*b*real_part(cos_integral(f*x + c*f/d))*tan(1/2*e)^2*tan(1/2*
c*f/d) + 2*b*real_part(cos_integral(-f*x - c*f/d))*tan(1/2*e)^2*tan(1/2*c*f/d) - 2*b*real_part(cos_integral(f*
x + c*f/d))*tan(1/2*e)*tan(1/2*c*f/d)^2 - 2*b*real_part(cos_integral(-f*x - c*f/d))*tan(1/2*e)*tan(1/2*c*f/d)^
2 - b*imag_part(cos_integral(f*x + c*f/d))*tan(1/2*e)^2 + b*imag_part(cos_integral(-f*x - c*f/d))*tan(1/2*e)^2
 + 2*a*log(abs(d*x + c))*tan(1/2*e)^2 - 2*b*sin_integral((d*f*x + c*f)/d)*tan(1/2*e)^2 + 4*b*imag_part(cos_int
egral(f*x + c*f/d))*tan(1/2*e)*tan(1/2*c*f/d) - 4*b*imag_part(cos_integral(-f*x - c*f/d))*tan(1/2*e)*tan(1/2*c
*f/d) + 8*b*sin_integral((d*f*x + c*f)/d)*tan(1/2*e)*tan(1/2*c*f/d) - b*imag_part(cos_integral(f*x + c*f/d))*t
an(1/2*c*f/d)^2 + b*imag_part(cos_integral(-f*x - c*f/d))*tan(1/2*c*f/d)^2 + 2*a*log(abs(d*x + c))*tan(1/2*c*f
/d)^2 - 2*b*sin_integral((d*f*x + c*f)/d)*tan(1/2*c*f/d)^2 + 2*b*real_part(cos_integral(f*x + c*f/d))*tan(1/2*
e) + 2*b*real_part(cos_integral(-f*x - c*f/d))*tan(1/2*e) - 2*b*real_part(cos_integral(f*x + c*f/d))*tan(1/2*c
*f/d) - 2*b*real_part(cos_integral(-f*x - c*f/d))*tan(1/2*c*f/d) + b*imag_part(cos_integral(f*x + c*f/d)) - b*
imag_part(cos_integral(-f*x - c*f/d)) + 2*a*log(abs(d*x + c)) + 2*b*sin_integral((d*f*x + c*f)/d))/(d*tan(1/2*
e)^2*tan(1/2*c*f/d)^2 + d*tan(1/2*e)^2 + d*tan(1/2*c*f/d)^2 + d)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \sin (e+f x)}{c+d x} \, dx=\int \frac {a+b\,\sin \left (e+f\,x\right )}{c+d\,x} \,d x \]

[In]

int((a + b*sin(e + f*x))/(c + d*x),x)

[Out]

int((a + b*sin(e + f*x))/(c + d*x), x)